Given:
The sequence is
an=(−3)nn!
.
Definition used:
If
an
is a sequence and
limn→∞an
exists, then the sequence
an
is said to be converges; otherwise it diverges.
Theorem used:
If
limn→∞|an|
converges to zero, then
limn→∞an
is converges to zero. (1)
Squeeze Theorem:
If
xn≤zn≤yn
for
n≥N
and
limn→∞xn=limn→∞yn=l
then
limn→∞zn=l
. (2)
Calculation:
Obtain the limit of the sequence to investigate whether the sequence converges or diverges.
Compute
limn→∞an=limn→∞((−3)nn!)
.
Compute the value of
(−3)nn!
.
|(−3)nn!|=|(−1)n⋅3nn!|={3nn!,if n is odd3nn!,if n is even=3nn!
Note that, the factorial of n is
1⋅2⋅3...(n−1)⋅n.
.
3nn!=3⋅3⋅3...3⋅3︷n times1⋅2⋅3...(n−1)⋅n=31⋅32⋅33...3n−1⋅3n≤31⋅32⋅3n=272n
Since
0≤|(−3)nn!|
and
|(−3)nn!|≤272n
, it can be concluded that
0≤|(−3)nn!|≤272n
.
Apply Squeeze Theorem (2).
limn→∞(0)≤limn→∞(|(−3)nn!|)≤limn→∞(272n)0≤limn→∞(|(−3)nn!|)≤272⋅limn→∞(1n)0≤limn→∞(|(−3)nn!|)≤272⋅00≤limn→∞(|(−3)nn!|)≤0
Therefore,
limn→∞(|(−3)nn!|)=0
.
Since
|(−3)nn!|
converges to zero and by using Theorem (1),
(−3)nn!
converges to zero.
Therefore,
limn→∞((−3)nn!)=0
.
Since
limn→∞an
exist and by using the definition of the sequence, it can be concluded that the sequence converges to the limit 0.
Therefore, the sequence is converges to the limit 0.