Given:
Consider the given sequence as
an=lnnln2n
.
Definition used:
If
an
is a sequence and
limn→∞an
exists, then the sequence
an
is said to be converges; otherwise it diverges.
Laws of limits for sequences used:
If
f(x)
and
g(x)
are two functions, then,
limx→a[f(x)g(x)]=limx→af(x)limx→ag(x)
and
limx→ag(x)≠0
.
If
f(x)
and
g(x)
are two functions, then,
limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x)
.
Calculation:
Obtain the limit of the sequence to investigate whether the sequence converges or diverges.
Compute
limn→∞an=limn→∞ln(n)ln(2⋅n)
.
Apply the Logarithm Product rule
ln(a⋅b)=ln(a)+ln(b)
.
limn→∞ln(n)ln(2⋅n)=limn→∞ln(n)ln(2)+ln(n)
Divide the numerator and the denominator by
ln(n)
.
limn→∞ln(n)ln(2⋅n)=limn→∞ln(n)ln(n)ln(2)+ln(n)ln(n)=limn→∞1ln(2)ln(n)+1
Apply the laws of limits for sequences and simplify the terms.
limn→∞ln(n)ln(2⋅n)=limn→∞(1)limn→∞(ln(2)ln(n)+1)=limn→∞(1)limn→∞(ln(2)ln(n))+limn→∞(1)=1limn→∞(ln(2)ln(n))+1
Then, apply the laws of limits for sequences in the denominator and simplify the terms.
limn→∞ln(n)ln(2⋅n)=1limn→∞(ln(2))limn→∞(ln(n))+1=1ln(2)∞+1=10+1=1
Since
limn→∞an
exists and by using the definition of the sequence, it can be concluded that the sequence converges to the limit 1.
Therefore, the sequence converges to the limit 1.