To determine
To find: The value of
y′′ at the point
x=0.
Answer
The second derivative of the equation at
(0,1) is
y′′=0.
Explanation
Given:
The equation
xy+y3=1.
Derivative rules:
(1) Chain rule: If
y=f(u) and
u=g(x) are both differentiable function, then
dydx=dydu⋅dudx.
(2) Product Rule: If
f1(x) and
f2(x) are both differentiable, then
ddx(f1(x)f2(x))=f1(x)ddx(f2(x))+f2(x)ddx(f1(x)).
(3). Power Rule:
ddx(xn)=nxn−1
(4) Sum Rule:
ddx[f(x)+g(x)]=ddx[f(x)]+ddx[g(x)]
Calculation:
The value of y if
x=0 is computed as follows,
Substitute the value
x=0 in
xy+y3=1,
(0)y+y3=1y3=1y=1
Thus, the point is
(x,y)=(0,1).
Obtain the second derivative of the equation at
(0,1).
xy+y3=1
Differentiate implicitly with respect to x,
ddx(xy+y3)=ddx(1)ddx(xy)+ddx(y3)=0
Apply the product rule (2) and the power rule (3),
[xddx(y)+yddx(x)]+ddx(y3)=0[xdydx+y(1)]+3y3−1dydx=0
[xdydx+y]+3y2dydx=0 (1)
Substitute
(0,1) for
(x,y) in equation (1),
[(0)dydx+(1)]+3(1)2dydx=01+3dydx=03dydx=−1dydx=−13
Thus, the derivative
y′ at
(0,1) is
y′=−13.
Differentiate the equation (1) implicitly with respect to x,
ddx(xy′+y+3y2y′)=ddx(0)ddx(xy′)+ddx(y)+ddx(3y2y′)=0
Apply the product rule (2) and the chain rule (1),
[xddx(y′)+y′ddx(x)]+ddx(y)+[3y2ddx(y′)+y′ddx(3y2)]=0[xy′′+y′(1)]+dydx+[3y2y′′+y′(6y2−1)dydx]=0xy′′+y′+y′+3y2y′′+6yy′y′=0y′′(x+3y2)+y′(2+6yy′)=0
Substitute
(0,1) for
(x,y) and
y′=−13,
y′′(0+3(1)2)+(−13)(2+6(1)(−13))=03y′′−13(2−2)=03y′′=0y′′=0
Therefore, the second derivative of the equation at the point
(0,1) is
y′′=0.