To determine
To find: The first and second derivatives of y. That is,y′ and y″.
Answer
The first derivative of y=1(1+tanx)2 is y′=−2sec2x(1+tanx)3_
The second derivative of y=1(1+tanx)2 is y″=2sec2x(3tan2x−2tanx+3)(1+tanx)4_
Explanation
Given:
The function is y=1(1+tanx)2.
Result used: Chain Rule:
If h is differentiable at x and g is differentiable at h(x), then the composite function F=g∘h defined by F(x)=g(h(x)) is differentiable at x and F′ is given by the product
F′(x)=g′(h(x))⋅h′(x) (1)
Product Rule:
If f(x). and g(x) are both differentiable function, then
ddx[f(x)g(x)]=f(x)ddx[g(x)]+g(x)ddx[f(x)] (2)
Calculation:
Obtain the first derivative of
y′=ddx(y)=ddx(1(1+tanx)2)=ddx((1+tanx)−2)
Let h(x)=1+tanx and g(u)=(u)−2 where u=h(x).
Apply the chain rule as shown in equation (1).
y′=g′(h(x))⋅h′(x) (3)
The derivative g′(h(x)) is computed as follows,
g′(h(x))=g′(u)=ddu(g(u))=ddu((u)−2)=−2u−3
Substitute u=1+tanx in the above equation,
g′(h(x))=−2(1+tanx)−3
Thus, the derivative is g′(h(x))=−2(1+tanx)−3.
The derivative of h(x) is computed as follows,
h′(x)=ddx(1+tanx)=ddx(1)+ddx(tanx)=(0)+sec2x=sec2x
Thus the derivative is h′(x)=sec2x.
Substitute −2(1+tanx)−3 for g′(h(x)) and sec2x for h′(x) in equation (3),
y′=−2(1+tanx)−3(sec2x)=−2sec2x(1+tanx)−3=−2sec2x(1+tanx)3
Therefore, the derivative of y=1(1+tanx)2 is y′=−2sec2x(1+tanx)3_.
Obtain the second derivative of y.
y″=ddx(y′)=ddx(−2sec2x(1+tanx)3)
Apply the product rule as shown in equation (2),
y″=ddx(−2(1+tanx)−3⋅sec2x)
=−2(1+tanx)−3ddx(sec2x)+sec2xddx(−2(1+tanx)−3) (4)
Obtain the derivative ddx(sec2x) by using the chain rule as shown in equation (1),
Let k(x)=secx and s(u)=u2 where u=k(x).
ddx(sec2x)=s′(k(x))⋅k′(x) (5)
The derivative s′(k(x)) is computed as follows,
s′(k(x))=s′(u)=ddu(s(u))=ddu((u)2)=2u
Substitute u=secx in the above equation,
s′(k(x))=2secx
Thus, the derivative is s′(k(x))=2secx.
The derivative of k(x) is computed as follows,
k′(x)=ddx(secx)=secxtanx
Thus, the derivative is k′(x)=secxtanx.
Substitute 2secx for s′(k(x)) and secxtanx for h′(x) in equation (5),
ddx(sec2x)=2secx(secxtanx)=2sec2xtanx
Thus, the derivative is ddx(sec2x)=2sec2xtanx.
Obtain the derivative ddx(−2(1+tanx)−3) by using the chain rule (1),
Let p(x)=1+tanx and f(u)=−2u−3 where u=p(x)
ddx(−2(1+tanx)−3)=f′(p(x))⋅p′(x) (6)
The derivative f′(p(x)) is computed as follows,
f′(p(x))=f′(u)=ddu(f(u))=ddu(−2u)−3=−2(−3u−3−1)
Substitute u=1+tanx in the above equation,
f′(p(x))=6(1+tanx)−3−1=6(1+tanx)−4=6(1+tanx)4
Thus the derivative is f′(p(x))=6(1+tanx)4.
The derivative of p(x) is computed as follows,
p′(x)=ddx(1+tanx)=ddx(1)+ddx(tanx)=(0)+sec2x=sec2x
Thus, the derivative is p′(x)=sec2x.
Substitute 6(1+tanx)4 for f′(p(x)) and sec2x for p′(x) in equation (6),
ddx(−2(1+tanx)−3)=6(1+tanx)4(sec2x)=6sec2x(1+tanx)4
Thus, the derivative of is ddx(−2(1+tanx)−3)=6sec2x(1+tanx)4_.
Substitute 2sec2xtanx for ddx(sec2x) and 6sec2x(1+tanx)4 for ddx(−2(1+tanx)−3) in equation (4)
y″=−2(1+tanx)−3(2sec2xtanx)+sec2x(6sec2x(1+tanx)4)=−4sec2xtanx(1+tanx)3+6sec2xsec2x(1+tanx)4=2sec2x(−2(1+tanx)tanx+3sec2x)(1+tanx)4=2sec2x((−2tanx−2tan2x)+3(tan2x+1))(1+tanx)4 (Qsec2x=tan2x+1 )
Simplify further and obtain the derivative,
y″=2sec2x(−2tanx−2tan2x+3tan2x+3)(1+tanx)4=2sec2x(tan2x−2tanx+3)(1+tanx)4
Therefore, the derivative of y is y″=2sec2x(tan2x−2tanx+3)(1+tanx)4_.